2018-01-01から1ヶ月間の記事一覧

Pythonで実装しながら緑本を学ぶ (第4章 GLMのモデル選択)

前回から引き続き、データ解析のための統計モデリング入門(通称、緑本)を読み進めています。 述べられている理論を整理しつつ、Rでの実装をPythonに置き換えた際のポイントなども深掘りしていきます。 今回は第4章です。実装は以下で公開しています。 introd…

Pythonで実装しながら緑本を学ぶ (第3章 一般化線形モデル(GLM))

データ解析のための統計モデリング入門(通称、緑本)を読み始めました。 述べられている理論を整理しつつ、Rでの実装をPythonに置き換えた際のポイントなども深掘りしていきます。 今回は第3章です(前回の投稿はこちら)。実装は以下で公開しています。 introd…

Pythonで実装しながら緑本を学ぶ (第2章 確率分布と統計モデルの最尤推定)

データ解析のための統計モデリング入門(通称、緑本)を読み始めました。 述べられている理論を整理しつつ、Rでの実装をPythonに置き換えた際のポイントなども深掘りしていきます。 今回は第2章です。実装は以下で公開しています。 introduction_to_machine_le…

Python: レコメンドの行列分解を確率的勾配降下法で実装してMovieLens100Kに適用する

前々回の投稿( Python: レコメンドの行列分解を確率的勾配降下法で実装する - け日記 )では、欠測値やバイアスを考慮した行列分解を、確率的勾配降下法(SGD)で求める実装を行いました。 今回はおなじみMovieLens100K Datasetへ、このアルゴリズムを適用しま…

Python: scipy.sparseで疎行列計算する

疎行列計算用のモジュール scipy.sparse について解説します。 https://docs.scipy.org/doc/scipy/reference/sparse.html 疎行列クラス 疎行列とは要素のほとんど(90%以上)が0で構成される行列です。 レコメンドやソーシャルグラフなどの分野ではしばしば現…

Python: レコメンドの行列分解を確率的勾配降下法で実装する

過去3回の投稿で、行列分解(SVDとNMF)によるレコメンドを実装してきました。 Pythonで特異値分解(SVD)を理解する - け日記 SVDでMovieLensのレコメンドを実装する - け日記 NMFでMovieLensのレコメンドを実装する - け日記 ですが、いずれも欠測値やユーザご…